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1.0 SUMMARY

In thisprogram we develazla compact duabptical frequency comb (OFC) sensor for
standoff detection of national security relevant compouhidese compounds are primarily
solids at room temperature and consequently have low vapor prdaseaistic applicabn
scenarios these materials are found on common surfaces that are not necessarily optically flat and
highly reflective, so we emphasize diffusely reflective surfacesatieatepresentative of the
realworld surfacesBecausehe target materials haveeih strongest spectral signatures in the
longwave infraredl(WIR) regime, our OFC sources are based on dispersion compensated
guantum cascade lase@(Ls). Targeting two spectrally rich regions of the LWIR, we designed
lasers at 8.8m (1180 to 1240 cif) and 10.0mm with a novel dispersion compensating
approach in the laser processiiige 8mm lasers emit ~W optical power under cw operation
near room temperature and produce combs with optical bandwidths exceedanj180e
developed processiragorithms for reducing the high bandwidth mdigterodyne data stream
into the desired spectral information with up to 0.3'aesolution and optimizing the signal to
noise ratioFinally, we tested a prototype demmb system against diffusely scaittgrsurfaces
at standoff distances up to 1 meter and demonstrated spectral discrimination atrthfew
mass loading leveh relevant metric for national security needs.
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2.0 INTRODUCTION

Physical Sciences In(PSl), together with theesearch group of PraféromeFaist atETH
Zurich and IRsweeplevelogda chipscale dual Optical Frequency@b (OFC)source in the
LWIR targetingthe detection ofnultiple chemical agnt simulant films at or below they/cnf
areal density in the presem of typical background clutter at proximal stanffidistances up to 5m.
The Offegémerated by two Quantum Cawpbmidenr Laser s
of combbandvidth and 1W output poweA schematic of theource and iteverall stanebff
sensor implementation is shown in Figur@ie dual OFC will be grown and processed on a
single epitaxial substrate. Each OFC will be electrically driven anerfir@@ng (requiring no
optical locking mechanisms). This Q&lased comb source is a uniqa&-comb source, where
the QCL cavity is the microesonator with giant3order norlinearity for comb generation that
requires no external pump laser.

Dual Comb

~5 meter
standoff

Chemical

Film ~

HHL
Package

Figure 1. Schematic of singkehip dual optial comb source in HHpackage (leftand
implementationn a stanebff sensor geometry (right

The key performance parameters for the OFC, as well as all othsysteins, are derived
from the sensor chemical detection requiremérie existing state of the art in staoffl LWIR
laserbased sensing of trace chemical films requires bulky and expensive ertmalQCL
sourcesThis programaddressethe cost anthesize of these sourcesd italso provids over
one order of magnitude increase in spectral density éotatiget 1 Hz detection rate, providing
improved detection and speciation capability while redusergsitivity toclutter noiseCompared
to thepreviousstate othe artin QCkb a s e d OF C 6 s increadd thesavepagegpomera m
and spectral bandwidthy an order of magnitude

The proposedensing scenario is a DoD mission objectivepfagtevent reconnaissance
of surface contaminants following the release of chemical agents. Surfaces of interest include
local topology, equipment (painted metal surfaces, structures), and typical construction material
(cloth, plastics, etc.). Typical iatfering materials/chemicals that might be present on these
surfaces include dust, pollen, soil, vegetation, various petroleum products, soot, and other

2
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industrial compoundsThe system level requirements have been derived frodothieProgram
ExecutiveOffice for Chemical and Biological DefenEHFPEQCBD) Next Generation Chemical
Detector (NGCD) systenThesensodeveloped hers expected to significantly reduce the cost and
SWaP of this system, while increasing performance.

This report summarizesioaccomplibments fromPhase 1 addressinggtfollowing key
technical challenges

1 Engineered Dispersion Control in High Power QCL CombsAchieving the required
spectral bandwidth and average output power will require careful management of the
QCL dispersionDispersion control in QCL devicesll be achieved by waveguide,
doping, andacetreflectance desigand optimization to balance tharious contributions
S0 as to achieve a flat dispersion curve over the spectral bandtithiigh operating
powers, the dispersion due to the optical gain is an additional design parameser that
optimized to achieve the target power and comb bandwidths

1 Optimized and efficient signal processingTo acquire the entire optical spectrum of
150 cm' in the RFbandwidth of 500 MHz on two detectpdatarates of at least
4 GBytes/sec are generated, which need to be processediime&b generate the
LWIR spectrum.

1 Standoff detection from diffusely scattering surfacesSpeckle noise and background
clutter can dominate noise sources in ldsged diffuse scattering/reflectance sensing.
Speckle properties of comb souregsanalyzed and mitigated usingasg@l diversity.
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
3.1 Quantum Cascade Laser Optical Frequency Combs

TheQuantum Cascade Laser (QCL) was first experimentall @84 (Faiset al.1994).
It is constituted of two parts: the gain medium (as well named active region) and the cavity. The
active region is a multilayer structure of at least two different semiconductor which present an
offset in the conduction band. This allow to create sked@auantum wells in which the
electrons will have quantified energies; intersubband transitions allow the emission of photons.
By engineering the width of each layer and applying a voltage on the structure, a cascading
structure allows to reach populatimversion and photon emission at the desired wavelength.
Finally, the fabrication of a cavity allows for the lasing emission to occur; the spectrum of
emission of the QCL corresponds to the convolution of the cavity modes with the gain spectra.
for this project, the material used are InGaAs/AllnAs grown by MBE on InP substrate. The
cavity is a ridge cavity heghtthoandi 8t b mbanwdwean
typically 4.5 mm. such cavity gives rise to Falftgrot multimode emission with mode
separation of about 0.3 ¢m

Frequency combs are characterized by equally spaced mode and a constant phase relation
between the modes. In QCLSs, the natural dispersion of the materials gives dispersivedrabry
modes. The frequency comb regime is reached thanks to the so called four wave mixing (FWM)
schematized in Figure 2 which allows louk of all the modes. Each comb line can be
characterized by the offset frequerfigyo, the repetition frequendy, and the indeX of the
line.

For dual comb spectroscop$dhiller 2004 Keilmann et al. 2004Coddingtoret al.
2010, Villareset al.2014), two QCL combs with slightly differerff,, are combined on a fast
detector. Each pair of line will beat togetlaad give rise to a line in the RF domain as shown in
Figure 3. By placing an absorbing molecule on the path of one or both laser beam, the intensity
of the lines in the optical domain will be affected and will be directly transferred in the RF multi
heteralyne signal. This technique has the advantage to not require moving parts as all
wavelengths are analyzed in parallel. As well, using lasers as a source offers a very high
brightness, necessary faasdoffdetection.
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Figure 2. Schematic of comb formation in QCL by four wave mixing (FWM)
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3.11 QCL combs characterization

The setup for QCL comb characterization is describdairyet al.[2017]:
Even if QCL frequency combs are stable under operation, they are sensitive to small changes in
optical feedback. It is therefore important to do all characterizations undemtieeoptical
conditions. To ensure consistent data characterization, we adopted the setup schematized in
Figure 4 top. The laser is driven with a low noise driver and albgends the RF part of the
current on a spectrum analyzer to characterize thedregyucomb beatnote. The beam is
collimated with a high numerical aperture lens of NA=0.85. In order to isolate the laser from
backreflections from thé-ourier Transform Infrared SpectrometElIR), a tilted neutral
density filter (NDF) with 1% transmissn is placed after the lens. A beam splitter can be used to
monitor the evolution of the optical power after the NDF. Finally, the spectra are measured with
a FTIR and the optical power is measured by placing a thermopile sensor directly after the lens.
In this configuration, we verified that no element placed after the NDF will disturb the beatnote
measured on the spectrum analyzer. Figure 4 bottom shows two spectra obtained under the same
driving conditions but once with a narrow beatnote and once viitbaa beatnote. The broad
beatnote was obtained by placing the NDF perpendicular to the beam to increase the optical
feedback in the laser and destabilize the frequency comb operation. The two spectra have a
different bandwidth; it is reduced by more tHehcmi® when in frequency comb operation. It is
thus crucial to do all optical spectra measurements of the frequency comb while conserving the
narrow beatnote properties during the measurement.

Current
controller
FTIR
Spectrum
4
AnalyseD

QCL Comb : ' / /

s NDF Beam

e

Lens Powermeter 1% splitter Power meter
Pos. 1 Pos. 2

Intensity (Arb. units)

2

1200 1250 1300
Wavenumber (cm”')
Figure 4. Schematic of the setupsed for QCL comb characterization (top). Optical spectra
(bottom) obtained ured the same driving conditiomgthout (red curve) and with (blue curve)
optical feedback.
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3.12 Dispersion compensation:

For the formation and stability of QCL combs, thepdision plays a crucial role. The
group delay dispersion (GDD) is the most convenient parameter to measure in order to
characterize the dispersion of the laser. The method used to measure the GDD first described in
Hofstetterand Fais{1999 is asfollows:

Measurement of a stthreshold interferogram with an FTIR
Isolation of the first satellite interferogram which corresponds to the interference with
photons having experienced one more round trip in the laser ¢se@\yFigure)

1 Extraction of the phasgpectrum accumulated after one round trip in the laser cavity by
Fouriertransformation

1 The Phase spectra is derived to obtain the dispersion and the value of the GDD.

e i ‘
‘
soco | 102 S e T
i T R ——te S gm0 i} L1 Pt oo
LN |

.....

T
T

Figure 5. Subthreshold interferograiteft) and zoom on the first satellite (right)

A strong effort in order to compensate the materials natural dispersion was done. The
first strategy was to use a Gir€surnois(GTI) approach. Figure 6 shows the principle of such
approach: a layer is deposited on one facet of the laser cavity and covered by a gold layer. Due to
the refractive index mismatch between the laser cavity and the deposited layer, a partial
reflectivity occurs at the interface; the gold layer on the other side of the deposited layer acts as a
100 % reflectivity mirror As shown in Figure ,/such configuration provides a modulation of the
GDD due to the periodic phase modulation. Several material conangsdbr the deposited
layer were tested in order to obtain different values of GDD correction; a 1D simulation based on
the matrix transfer formalism was used to design the deposited layers for the GTI coating.
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Figure 7. Group delay dispersioiOD) induced by a GTI coating.

As published inVillares et al. 014, usingthe GTI approach allowed us to improve the
comb operation of a QCL. Figure 8 shows the Vok@gical power as a function of current
(LIV) characteristics at different temperatures of a laser with a simple high reflectivity (HR)
coating (Al203/Au). The @mb operation regime occurs only on a small portion of the laser
dynamical range. Figure 9 shows the LIV characteristics of a laser with a GTI coating
(alternating layers of AD; and SiQ and with an Au layer as a last laydr) this case the laser
operdes in the comb regime on the full dynamical range as shown Imath@av beatnote
observed in Figure 1®Without coating, the GDD of those lasers emitting around 132b cm
wavenumber was positive; therefor as showRigure 11the GTI coating has beengigned to
add a negative GDD at this wavenumber. The discrepancy between the simulated and measured

8
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induced GDD at wavenumbers around 1300, ¢srattributed to the absorption for Siéx those
wavelengths.

w

Standard HR coating
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Figure 8. Measured_IV characteristics of a HR coated laser at different temperatures.
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Figure 9. Measured LIV characteristics of a GTI coated laser at different temperatures.
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Figure 10. Measured RF beatnotas-10C for different currents.
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Figure 11. Measured GDD induced by an HR coating and a GTI coating together with the
simulated GDD induced by the GTI coating.
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In order to avoid absorbing materials and to reach greater values of negative induced
GDD, other combinations of coatimgaterials have been tested. Figuresh@ws for example
the simulated and measured GDD induced by a GTlI madeO§AF;, Ge and Audyers.

s e ) ) GT| dispersion
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——Mamaurad T - Phase method

GOD His™)

T

05t

1308 2000 2200 - = 4030
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Figure 12. Simulatedand measured GDD induced by a GTI coating made £):AN F3,
GeandAu.

Even if the approach of using GTI coatings for improving the comb operation of the
lasers gave promising results, it suffersn strong limitations. The first one is that the GTI
coating needs to be done on each laser; it is adomsuming procedure which requires very
good control of the deposited layer thicknesses to reach the targeted wavelength. In addition, the
working principle of the GTI coating implies that the deposited coating acts as a cavity; this
leads to high optical power in the coating layers which turns out to be a problem fpohigh
QCL combs. As shown in Figure 1®any coatingi e x pl oded o6 due the absor
of the high optical power in the coating layers. Due to those reasons, the approach of
compensating the dispersion directly by engineering the wavegaislalso explored.

Figure 13. Opticalmicroscopemageof the back facet of aser after explosion of the
GTI coating
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The approach eventually adopfed dispersion compensation was to work directly on
the waveguide desigOMSOLsimulations were used in order to determine the digare of
the GDD as a function of the laser ridge width (Segere 14) and as well to optimize the top
cladding design for optimal GDD values. Asscribed irBidauxet al. [2017] couplinga
plasmonic mode to the ridge optical mode allows to changdisatiy the GDD. Simulations
illustrating this property are shown ingtire 15

6000

5000

120 140 1600 1800
Wavenumbers (em™1)

Figure 14. Smulatedgroup velocity dispersiorQVD) as a function of the wavelength for two
different laser ridge widthinset: optical mode profile simulation wi€OMSOL
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Figure 15. Simulated cross section of the plasmonic (red curve) and ridge optical (blue curve)
mode as a function of the vertical positidop). Dispersion of the refraiwe index for the
plasmonic (red curve) and ridge optical (blue curve) mode for different cladding thicknesses
(middle) with inset showing ode profile simulations for the plasmonic (left) and ridge optical
(right) mode Simulated GVD of the ridge opticahode for diffeent top cladding thicknesses
(bottom).

3.13 Active region design and growth

QCL combs at 126 cm*

The final design for the QCL comb emitting with wavenumbers around 12%(@scan
two stack design, meaning two central emission wavelengths in order to have a broader
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bandwidth, obtained by genetic optimization. The simulatioresaoh stack are shown in
Figuresl6 with the predicted total modal gain in Figure 17.
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Figure 16. Smulated wavefunctions distribution (left) and LINigint) for the structure of
eachstack.
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Figure 17. Simulation of the gain for each stack and total gain.

The QCL combs resulting from thiesign gave outstanding power performances and are
to date the most powerful QCL comteportedJouy et al. 2017]Figurel8 shows the LIV
characteristics as well as the wall plug efficiency for these devices.
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Figure 18. LIV characteristics (a) and wall pledficiencyof the laser at15°C (full line) and
20°C (dashed lines).
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The beatnote, spectra, beatnote frequency and beatnote wigthdi for different
driving currents and all5°C are presented in Figure 19 a), i aprespectively, showing comb
operation up to roll over with very strong beatnote SNR.
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Figure 19. rf beahote(a) and corresponding optical spectra (b)didierent currentat-15°C.
(c) Summarizes thieeatnotdrequency and width a20 dB

Figure 2@ shows the beatnote-46°C for a current of 1375 mA with a narrower
bandwidth. Under those driving conditions, the optical output power is above 1 Watt and the
beatnote present an SNR abd®0 dB. The spectia@ 1375 mAfor temperatures ofL5°C and
20°C are shown in Figure 208t -15°C, a total bandwidth of 85 ciwith a power of 1.05 W is
achieved and a continuous bandwidth of 82'¢ras a power per mode above 1 mW with an
average power of 4.1 mW. At rocemperature, a total bandwidth of 75 twmith a power of
0.664 W is achieved and a continuous bandwidth of 73(excluding 5 modes for
wavenumbers in the vicinity of 1225 €in has a power per mode above 1 mW with an average
power of 2.99 mWAt room emperature, the beatnote is more robust and is a narrow peak on all
the dynamical range beside at 1100 (rfgure 20g.
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Figure 20. a) rf beatnote at15°C and 1375 mA. b): mode spacing and power per mode at
1375mA for temperaires of-15°C (blue) and 28C (red). c)f beanote for different currents
at20°C.

Other laserérom the same process gave broader QCL comb emission bandwidth. An
example of a spectra and the corresponding beabhatd.5 mm uncoated laser operatedat O
and 1000 mA is presented in Figure &ith a bandwidth above 105 émThis value is still
lower than the targeted 150 ¢nthe most promising strategy to reach this bandwidth goal would
be to add a third stadk the active region to broaden even more the gain bandwidth.
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Figure 21. Log scalespectrgleft) and corresponding beatnote (rigftt) a temperature of°C
and a current of 1000 mA.

Two lasers wereombined in a dual OFGRip, generating the mulieterodyne
spectrum shown in Figure 2here he lasers are 4.5 mm long and are operated dfCand
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the other at-15°Cwith currents of approximately 1270 and 1386 mA respectively without
further stabilization. Even if uncaad, each laser has an optical output power above 400 mW in
those driving conditions. About 215 peaks corresponding to an optical bandwidth of more than
70 cm' are observable between 200 and 600 MHz with a spacing of approximately 1.77 MHz
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Figure 22. Multi-heterodynespectra with 20 mmitegration time and zoom {imset) between
230 and 250 MHz

QCL combs at 1025 cih

The latest active region developed for emission centered around 1345 arone stack
active region. The LIV characteristic of a 4.5 mm HRted laser is shown in Figure &8
different temperatures. The comb charaztdion is presented in Figure & different driving
currents at15°C. It presents a narrow beatnotel dhus a comb operation on the entire
dynamical range, giving more than 300 mW of output power and a bandwidth abové & cm
the highest currents. Here again the power is much above the targeted optical power of 50 mW
but the bandwidth ibelow the tageted 150 cf. Here as welladding another staakill
ultimately allow further increasdshndwidth.
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Figure 23. LIV characteristics of a 4.5 mm HR coated device at different temperatures.

Figure 24. Optical spectra at different currents for a temperatur@ $iC (left) and

corresponding RF beatnote (right).
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